
csvkit Documentation
Release 0.5.0 (beta)

Christopher Groskopf

June 28, 2013

CONTENTS

i

ii

CHAPTER

ONE

ABOUT

csvkit is a suite of utilities for converting to and working with CSV, the king of tabular file formats.

It is inspired by pdftk, gdal and the original csvcut utility by Joe Germuska and Aaron Bycoffe.

Important links:

• Repository: https://github.com/onyxfish/csvkit

• Issues: https://github.com/onyxfish/csvkit/issues

• Documentation: http://csvkit.rtfd.org/

• Schemas: https://github.com/onyxfish/ffs

• Buildbot: http://travis-ci.org/#!/onyxfish/csvkit

1

https://github.com/onyxfish/csvkit
https://github.com/onyxfish/csvkit/issues
http://csvkit.rtfd.org/
https://github.com/onyxfish/ffs
http://travis-ci.org/#!/onyxfish/csvkit

csvkit Documentation, Release 0.5.0 (beta)

2 Chapter 1. About

CHAPTER

TWO

PRINCIPLES

csvkit is to tabular data what the standard Unix text processing suite (grep, sed, cut, sort) is to text. As such, csvkit
adheres to the Unix philosophy.

1. Small is beautiful.

2. Make each program do one thing well.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces.

9. Make every program a filter.

As there is no formally defined CSV format, csvkit encourages well-known formatting standards:

• Output favors compatability with the widest range of applications. This means that quoting is done with double-
quotes and only when necessary, columns are separated with commas, and lines are terminated with unix style
line endings (“\n”).

• Data that is modified or generated will prefer consistency over brevity. Floats always include at least one decimal
place, even if they are round. Dates and times are written in ISO8601 format.

3

http://en.wikipedia.org/wiki/Unix_philosophy

csvkit Documentation, Release 0.5.0 (beta)

4 Chapter 2. Principles

CHAPTER

THREE

INSTALLATION

For users:

pip install csvkit

For developers:

git clone git://github.com/onyxfish/csvkit.git
cd csvkit
mkvirtualenv --no-site-packages csvkit
pip install -r requirements.txt
nosetests

Note: csvkit is routinely tested on OSX, somewhat less frequently on Linux and once in a while on Windows. All
platforms are supported. It is tested against Python 2.6, 2.7 and PyPy. Neither Python < 2.6 nor Python >= 3.0 are
supported at this time.

5

csvkit Documentation, Release 0.5.0 (beta)

6 Chapter 3. Installation

CHAPTER

FOUR

TUTORIAL

The csvkit tutorial walks through processing and analyzing a real dataset from data.gov. It is divided into several parts
for easier reading:

4.1 Getting started

4.1.1 Description

There is no better way to learn how to use a new tool than to see it applied in a real world situation. This tutorial
will explain the workings of most of the csvkit utilities (including some nifty tricks) in the context of analyzing a real
dataset from data.gov.

The dataset that I’ve chosen to work with is recipients of United States Department of Veteran Affairs education
benefits, by state and year. For those who are unfamiliar, these are individuals whom the US government is paying
to attend school as a benefit of their having served in the military (or, in some case, having had a close relative who
served). We will be working with 2009 and 2010 data.

If you have never done much data processing work this tutorial should double as a reasonable introduction to that as
well.

4.1.2 Following along

I strongly encourage anyone reading this tutorial to work through the examples, however, if you really just want to see
how of the tools are applied then you can read through the complete bash script for the entire tutorial.

4.1.3 Getting the data

Let’s start by creating a clean workspace:

$ mkdir va_benefits
$ cd va_benefits

Now let’s fetch the 2009 data file:

$ wget -O 2009.csv http://www.data.gov/download/4029/csv

At first glance this may appear to have worked. You will end up with a 2009.csv file in your working directory.
However, when I said this tutorial would tackle real-world problems, I meant it. Let’s take a look at the contents of
that file:

7

http://data.gov
http://data.gov
http://www.data.gov/raw/4029
http://www.data.gov/raw/4509
https://gist.github.com/924589

csvkit Documentation, Release 0.5.0 (beta)

$ cat 2009.csv
<html><head><title>Request Rejected</title></head><body>The requested URL was rejected.

Please contact the VA Network and Security Operations Center at 1-800-877-4328 or email VANSOC@va.gov, if you feel this is in error.

Your support ID is: 1193122742127908960
 Appliance name: gwwrpx1
</body></html>

It seems data.gov is redirecting our request to the VA’s website and they don’t like people fetching down files from the
command-line. Fortunantely for us, this is a terribly naive thing to do, and easy to work around.

Let’s pretend our request is coming from Google Chrome instead of wget:

$ wget -O 2009.csv -U "Mozilla/5.0 (X11; U; Linux x86_64; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16" http://www.data.gov/download/4029/csv

And use the Unix text-processing utility head to check the first five lines and make sure the file looks right this time:

$ head -n 5 2009.csv
State Name,State Abbreviate,Code,Montgomery GI Bill-Active Duty,Montgomery GI Bill- Selective Reserve,Dependents’ Educational Assistance,Reserve Educational Assistance Program,Post-Vietnam Era Veteran’s Educational Assistance Program,TOTAL,
ALABAMA,AL,01,"6,718","1,728","2,703","1,269",8,"12,426",
ALASKA,AK,02,776,154,166,60,2,"1,158",
ARIZONA,AZ,04,"26,822","2,005","3,137","2,011",11,"33,986",
ARKANSAS,AR,05,"2,061",988,"1,575",886,3,"5,513",

That looks better so let’s fetch the 2010 data using the same trick:

$ wget -O 2010.csv -U "Mozilla/5.0 (X11; U; Linux x86_64; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16" http://www.data.gov/download/4509/csv

If you’re working from a copy of the csvkit source code, you can also find these files in the
examples/realdata folder with their default names, FY09_EDU_Recipients_by_State.csv and
Datagov_FY10_EDU_recp_by_State.csv, but getting them this way was a lot more fun, right?

4.1.4 Fixing the files with sed

Nothing is ever easy when you’re working with government data. We’ve got one more problem before we can get
down to brass tacks and start hacking these files. The first file looked fine, but let’s check out the head of that second
file:

$ head -n 5 2010.csv
,,,,,,,,
Number of Beneficaries (Students) Who Recieved VA Education Benefit By State During FY 2010,,,,,,,,
State Name,State Abbreviate,Post-9/11GI Bill Program,Montgomery GI Bill - Active Duty,Montgomery GI Bill - Selective Reserve,Dependents’ Educational Assistance,Reserve Educational Assistance Program,Post-Vietnam Era Veteran’s Educational Assistance Program,TOTAL
ALABAMA,AL,7738,5779,2075,3102,883,5,"19,582"
ALASKA,AK,1781,561,170,164,28,1,"2,705"

As you can see, this multiple header lines. We need to modify this file to fix the issue, but as a matter of best practice
let’s backup our originals first:

$ cp 2009.csv 2009_original.csv
$ cp 2010.csv 2010_original.csv

With that done let’s use the old hacker standby sed to kill those first two header lines:

$ cat 2010_original.csv | sed "1,2d" > 2010.csv

sed is an abbreviation for “stream editor”, which is a useful phrase to keep in mind if you’re not used to working with
these tools. csvkit and the other tools introduced in the next chapter all operate on streams of data, processing them
one line at a time. The sed command we just used translates to, “Select lines 1 and 2 of the input, (d)elete them.”

The previous command also introduces a couple other concepts that are much more important than the indiosyncrancies
of sed.

8 Chapter 4. Tutorial

http://data.gov

csvkit Documentation, Release 0.5.0 (beta)

4.1.5 Piping

The first is piping. If you haven’t spent too much time in the terminal you may be unfamiliar with the | (pipe). The
pipe means, “take the output of the former command and use it as input to the latter.” So in this case the output of cat
(which simply prints a file) is being piped into sed.

4.1.6 Output redirection

The second interesting thing is output redirection. The > character means, send output from this command to a file. If
I had used >> it would have been appended to the end of the file rather than overwriting it. This is important because
by default sed will simply send its output to the console, which is great for piping, but not very useful if you want to
save your results.

4.1.7 Putting it together

All the csvkit utilities work with the concepts of piping and output redirection. The output of any utility can be piped
into another and into another and then at some point down the road redirected to a file. In this way they form a data
processing “pipeline” of sorts, allowing you to do non-trivial, repeatable work without creating dozens of intermediary
files.

Make sense? If you think you’ve got it figured out, you can move on to Examining the data.

4.2 Examining the data

4.2.1 Cutting up the data with csvcut

Now let’s start investigating this dataset. The first thing we might want to know is what columns are included. To
figure that out let’s use csvcut:

$ csvcut -n 2009.csv
1: State Name
2: State Abbreviate
3: Code
4: Montgomery GI Bill-Active Duty
5: Montgomery GI Bill- Selective Reserve
6: Dependents’ Educational Assistance
7: Reserve Educational Assistance Program
8: Post-Vietnam Era Veteran’s Educational Assistance Program
9: TOTAL

10:

csvcut is the beating heart of csvkit and was the original inspiration for building the rest of the tools. However, in
this case we aren’t using its full power. When the -n flag is specified, csvcut simply prints the column numbers and
names and exits. We’ll see the rest of its capabilities shortly.

This tells us a few things about the dataset, including that the final column doesn’t have a name. However, it doesn’t
tell us anything about what sort of data is in each column. Let’s try peeking at a couple columns to try to figure that
out:

$ csvcut -c 2,3 2009.csv | head -n 5
State Name,Code
AL,01
AK,02

4.2. Examining the data 9

csvkit Documentation, Release 0.5.0 (beta)

AZ,04
AR,05

Now we see the power of csvcut. Using the -c flag we are able to specify columns we want to extract from the input.
We also use Unix utility head to look at just the first five rows of output. From the look of things the “Code” column
is a identifier that is unique to each state. It also appears that the dataset is alphabetical by state.

4.2.2 Statistics on demand with csvstat

Another utility included with csvkit is csvstat, which mimics the summary() function from the computational statistics
programming language “R”.

Let’s use what we learned in the previous section to look at just a slice of the data:

$ csvcut -c 1,4,9,10 2009.csv | csvstat
1. State Name
<type ’unicode’>
Nulls: Yes
Unique values: 53
Max length: 17
Samples: "FLORIDA", "IDAHO", "ARIZONA", "OHIO", "IOWA"

2. Montgomery GI Bill-Active Duty
<type ’int’>
Nulls: Yes
Min: 435
Max: 34942
Mean: 6263
Median: 3548.0
Unique values: 53

3. TOTAL
<type ’int’>
Nulls: Yes
Min: 768
Max: 46897
Mean: 9748
Median: 6520.0
Unique values: 53

4.
Empty column

Like csvcut, csvstat lists columns with their numbers (in this case the column numbers are those of the CSV
file output by csvcut). However, csvstat also performs type inference on the columns and computes relevant
statistics based on their types. In this case we have a unicode column (internally csvkit uses unicode exclusively to
represent text), and two int (integer) columns. For the unicode column we know it contains nulls (blanks), that it has
53 unique values, that the longest value is 17 characters, and we also have five examples of data from that column.

From the statistics on the integer columns we can see that the median number of indviduals exercising VA benefits
across the states is 6520, of which 3548 is the median number exercising the GI Bill while on active duty.

We also see that the final column of the original CSV not only lacks a header, but is entirely empty. (Which is the
same thing as saying that every row in this file included a trailing comma.)

If this dataset had included a column of dates or times, csvstat would have displayed the range and other details
relevant to time-sequences.

10 Chapter 4. Tutorial

http://www.r-project.org/

csvkit Documentation, Release 0.5.0 (beta)

4.2.3 Searching for rows with csvgrep

After reviewing the summary statistics you might wonder where your home state falls in the order. To get a simple
answer to the question we can use csvgrep to search for the state’s name amongst the rows. Let’s also use csvcut to
just look at the columns we care about:

$ csvcut -c 1,"TOTAL" 2009.csv | csvgrep -c 1 -m ILLINOIS
State Name,TOTAL
ILLINOIS,"21,964"

In this case we are searching for the value “ILLINOIS” in the first column of the input. We can also build a more-
powerful and less-verbose search by using the regular expressions flag:

$ csvcut -c 1,"TOTAL" 2009.csv | csvgrep -c 1 -r "^I"
State Name,TOTAL
ILLINOIS,"21,964"

Here we have found all the states that start with the letter “I”.

What if we wanted to know where Illinois ranks amongst the states with individuals claiming VA benefits? In order to
answer that we need to learn a few more tricks.

4.2.4 Flipping column order with csvcut

(Note: In the next few sections we will repeat some commands to show how you can build up a complex operation as
a sequence of simple ones.)

Returning for a moment to csvcut, we can use its column selection logic as a powertool for reordering columns. Let’s
pare back the number of columns and make the column we are most interested in be first:

$ csvcut -c 9,1 2009.csv | head -n 5
TOTAL,State Name
12426,ALABAMA
1158,ALASKA
33986,ARIZONA
5513,ARKANSAS

4.2.5 Sorting with csvsort

Now we can use csvsort to sort the rows by the first column:

$ csvcut -c 9,1 2009.csv | csvsort -r | head -n 5
TOTAL,State Name
46897,CALIFORNIA
40402,TEXAS
36394,FLORIDA
33986,ARIZONA

The -r tells csvsort to sort in descending order.

We can now see that Illinois ranks fifth for individuals claiming VA benefits, behind mostly larger states, although
Arizona is a surprising name to appear in the top five, given its relative size.

This works well for finding Illinois’ rank as its in the top five, but if it had been further down the list we would have
had to count rows to determine its rank. That’s inefficient and there is a better way.

4.2. Examining the data 11

csvkit Documentation, Release 0.5.0 (beta)

4.2.6 Using line numbers as proxy for rank

The -l flag is a special flag that can be passed to any csvkit utility in order to add a column of line numbers to its
output. Since this data is being sorted we can use those line numbers as a proxy for rank:

$ csvcut -c 9,1 2009.csv | csvsort -r -l | head -n 11
line_number,TOTAL,State Name
1,46897,CALIFORNIA
2,40402,TEXAS
3,36394,FLORIDA
4,33986,ARIZONA
5,21964,ILLINOIS
6,20541,VIRGINIA
7,18236,GEORGIA
8,15730,NORTH CAROLINA
9,13967,NEW YORK
10,13962,MISSOURI

Missouri had the tenth largest population of individuals claiming veterans education benefits.

If we were to join this data up with a table of state population’s we could see how much of an outlier state’s like
Arizona and Missouri are. In future sections we’ll present tools for doing just that, however, this specific question is
left as an experiment for the reader.

4.2.7 Reading through data with csvlook and less

You may notice in the previous output that starting on line ten the total numbers cease to line up correctly. This
problem would be worse if we hadn’t reordered the columns to put the number first. For this reason CSV is often
somewhat difficult to work with in the terminal. To mitigate this problem we can use csvlook to display the data in a
fixed-width table:

$ csvcut -c 9,1 2009.csv | csvsort -r -l | csvlook

| line_number | TOTAL | State Name |

1	46897	CALIFORNIA
2	40402	TEXAS
3	36394	FLORIDA
4	33986	ARIZONA
5	21964	ILLINOIS
6	20541	VIRGINIA
7	18236	GEORGIA
8	15730	NORTH CAROLINA
9	13967	NEW YORK
10	13962	MISSOURI
[...]

Hint: If your table doesn’t render like this one, try making you terminal window wider.

Isn’t that better? You may still find it annoying it to have the entire contents of the table get printed to your terminal
window. To better manage the output try piping it to the unix utility less or, if you’re just glancing at it, more.

4.2.8 Saving your work

The complete ranking might be a useful thing to have around. Rather than computing it every time, let’s use output
redirection to save a copy of it:

12 Chapter 4. Tutorial

csvkit Documentation, Release 0.5.0 (beta)

$ csvcut -c 9,1 2009.csv | csvsort -r -l > 2009_ranking.csv

4.2.9 Onward to merging

At this point you should be comfortable with the analytical capabilities of csvkit.

Next up: Adding another year of data.

4.3 Adding another year of data

Coming soon..

4.4 Wrapping up

Coming soon...

4.3. Adding another year of data 13

csvkit Documentation, Release 0.5.0 (beta)

14 Chapter 4. Tutorial

CHAPTER

FIVE

USAGE

csvkit is comprised of a number of individual command line utilities that be loosely divided into a few major categories:
Input, Processing, and Output. Documentation and examples for each utility are described on the following pages.

Input

5.1 in2csv

5.1.1 Description

Converts various tabular data formats into CSV.

Converting fixed width requires that you provide a schema file with the “-s” option. The schema file should have the
following format:

column,start,length
name,0,30
birthday,30,10
age,40,3

The header line is required though the columns may be in any order:

usage: in2csv [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-f FORMAT] [-s SCHEMA]
[FILE]

Convert common, but less awesome, tabular data formats to CSV.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-f FORMAT, --format FORMAT

The format of the input file. If not specified will be
inferred from the file type. Supported formats: csv,
dbf, fixed, geojson, json, xls, xlsx.

-s SCHEMA, --schema SCHEMA
Specifies a CSV-formatted schema file for converting
fixed-width files. See documentation for details.

-k KEY, --key KEY Specifies a top-level key to use look within for a
list of objects to be converted when processing JSON.

15

csvkit Documentation, Release 0.5.0 (beta)

-y SNIFFLIMIT, --snifflimit SNIFFLIMIT
Limit CSV dialect sniffing to the specified number of
bytes.

--sheet SHEET The name of the XLSX sheet to operate on.

Also see: Arguments common to all utilities.

5.1.2 Examples

Convert the 2000 census geo headers file from fixed-width to CSV and from latin-1 encoding to utf8:

$ in2csv -e iso-8859-1 -f fixed -s examples/realdata/census_2000/census2000_geo_schema.csv examples/realdata/census_2000/usgeo_excerpt.upl > usgeo.csv

Note: A library of fixed-width schemas is maintained in the ffs project:

https://github.com/onyxfish/ffs

Convert an Excel .xls file:

$ in2csv examples/test.xls

Standardize the formatting of a CSV file (quoting, line endings, etc.):

$ in2csv examples/realdata/FY09_EDU_Recipients_by_State.csv

Fetch csvkit’s open issues from the Github API, convert the JSON response into a CSV and write it to a file:

$ curl https://api.github.com/repos/onyxfish/csvkit/issues?state=open | in2csv -f json -v > issues.csv

Convert a DBase DBF file to an equivalent CSV:

$ in2csv examples/testdbf.dbf > testdbf_converted.csv

Fetch the ten most recent robberies in Oakland, convert the GeoJSON response into a CSV and write it to a file:

$ curl "http://oakland.crimespotting.org/crime-data?format=json&type=robbery&count=10" | in2csv -f geojson > robberies.csv

Processing

5.2 csvclean

5.2.1 Description

Cleans a CSV file of common syntax errors. Outputs [basename]_out.csv and [basename]_err.csv, the former contain-
ing all valid rows and the latter containing all error rows along with line numbers and descriptions:

usage: csvclean [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-n]
[FILE]

Fix common syntax errors in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

16 Chapter 5. Usage

https://github.com/onyxfish/ffs

csvkit Documentation, Release 0.5.0 (beta)

optional arguments:
-h, --help show this help message and exit
-n, --dry-run If this argument is present, no output will be

created. Information about what would have been done
will be printed to STDERR.

Also see: Arguments common to all utilities.

5.2.2 Examples

Test a file with known bad rows:

$ csvclean -n examples/bad.csv

Line 3: Expected 3 columns, found 4 columns
Line 4: Expected 3 columns, found 2 columns

5.3 csvcut

5.3.1 Description

Filters and truncates CSV files. Like unix “cut” command, but for tabular data:

usage: csvcut [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-n] [-c COLUMNS] [-s] [-l]
[FILE]

Filter and truncate CSV files. Like unix "cut" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --names Display column names and indices from the input CSV

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices or names to
be extracted. Defaults to all columns.

-l, --linenumbers Insert a column of line numbers at the front of the
output. Useful when piping to grep or as a simple
primary key.

Note that csvcut does not include row filtering, for this you should pipe data to csvgrep.

Also see: Arguments common to all utilities.

5.3.2 Examples

Print the indices and names of all columns:

5.3. csvcut 17

csvkit Documentation, Release 0.5.0 (beta)

$ csvcut -n examples/realdata/FY09_EDU_Recipients_by_State.csv
1: State Name
2: State Abbreviate
3: Code
4: Montgomery GI Bill-Active Duty
5: Montgomery GI Bill- Selective Reserve
6: Dependents’ Educational Assistance
7: Reserve Educational Assistance Program
8: Post-Vietnam Era Veteran’s Educational Assistance Program
9: TOTAL

10:

Extract the first and third columns:

$ csvcut -c 1,3 examples/realdata/FY09_EDU_Recipients_by_State.csv

Extract columns named “TOTAL” and “State Name” (in that order):

$ csvcut -c TOTAL,"State Name" examples/realdata/FY09_EDU_Recipients_by_State.csv

5.4 csvgrep

5.4.1 Description

Filter tabular data to only those rows where certain columns contain a given value or match a regular expression:

usage: csvgrep [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-e ENCODING] [-l] [-n] [-c COLUMNS] [-r]
[FILE] [PATTERN]

Like the unix "grep" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-n, --names Display column names and indices from the input CSV

and exit.
-c COLUMNS, --columns COLUMNS

A comma separated list of column indices or names to
be searched.

-m PATTERN, --match PATTERN
The string to search for.

-r REGEX, --regex REGEX
If specified, must be followed by a regular expression
which will be tested against the specified columns.

-f MATCHFILE, --file MATCHFILE
If specified, must be the path to a file. For each
tested row, if any line in the file (stripped of line
separators) is an exact match for the cell value, the
row will pass.

-i, --invert-match If specified, select non-matching instead of matching
rows.

18 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

Also see: Arguments common to all utilities.

NOTE: Even though ‘-m’, ‘-r’, and ‘-f’ are listed as “optional” arguments, you must specify one of them.

5.4.2 Examples

Search for the row relating to Illinois:

$ csvgrep -c 1 -m ILLINOIS examples/realdata/FY09_EDU_Recipients_by_State.csv

Search for rows relating to states with names beginning with the letter “I”:

$ csvgrep -c 1 -r "^I" examples/realdata/FY09_EDU_Recipients_by_State.csv

5.5 csvjoin

5.5.1 Description

Merges two or more CSV tables together using a method analogous to SQL JOIN operation. By default it performs an
inner join, but full outer, left outer, and right outer are also available via flags. Key columns are specified with the -c
flag (either a single column which exists in all tables, or a comma-seperated list of columns with one corresponding to
each). If the columns flag is not provided then the tables will be merged “sequentially”, that is they will be merged in
row order with no filtering:

usage: csvjoin [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-j JOIN] [--outer] [--left]
[--right]
FILES [FILES ...]

Execute a SQL-like join to merge CSV files on a specified column or columns.

positional arguments:
FILES The CSV files to operate on. If only one is specified,

it will be copied to STDOUT.

optional arguments:
-h, --help show this help message and exit
-c COLUMNS, --columns COLUMNS

The column name(s) on which to join. Should be either
one name (or index) or a comma-separated list with one
name (or index) for each file, in the same order that
the files were specified. May also be left
unspecified, in which case the two files will be
joined sequentially without performing any matching.

--outer Perform a full outer join, rather than the default
inner join.

--left Perform a left outer join, rather than the default
inner join. If more than two files are provided this
will be executed as a sequence of left outer joins,
starting at the left.

--right Perform a right outer join, rather than the default
inner join. If more than two files are provided this
will be executed as a sequence of right outer joins,
starting at the right.

5.5. csvjoin 19

csvkit Documentation, Release 0.5.0 (beta)

Note that the join operation requires reading all files into memory. Don’t try
this on very large files.

Also see: Arguments common to all utilities.

5.5.2 Examples

Join examples coming soon...

5.6 csvsort

5.6.1 Description

Sort CSV files. Like unix “sort” command, but for tabular data:

usage: csvsort [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-n] [-c COLUMNS] [-r]
[FILE]

Sort CSV files. Like unix "sort" command, but for tabular data.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-y SNIFFLIMIT, --snifflimit SNIFFLIMIT

Limit CSV dialect sniffing to the specified number of
bytes.
Specify the encoding the input file.

-n, --names Display column names and indices from the input CSV
and exit.

-c COLUMNS, --columns COLUMNS
A comma separated list of column indices or names to
be extracted. Defaults to all columns.

-r, --reverse Sort in descending order.

Also see: Arguments common to all utilities.

5.6.2 Examples

Sort the veteran’s education benefits table by the “TOTAL” column:

$ cat examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsort -c 9

View the five states with the most individuals claiming veteran’s education benefits:

$ cat examples/realdata/FY09_EDU_Recipients_by_State.csv | csvcut -c 1,9 | csvsort -r -c 2 | head -n 5

20 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

5.7 csvstack

5.7.1 Description

Stack up the rows from multiple CSV files, optionally adding a grouping value to each row:

usage: csvstack [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING] [-g GROUPS] [-n GROUP_NAME]
FILES [FILES ...]

Stack up the rows from multiple CSV files, optionally adding a grouping value.

positional arguments:
FILES

optional arguments:
-h, --help show this help message and exit
-g GROUPS, --groups GROUPS

A comma-seperated list of values to add as "grouping
factors", one for each CSV being stacked. These will
be added to the stacked CSV as a new column. You may
specify a name for the grouping column using the -n
flag.

-n GROUP_NAME, --group-name GROUP_NAME
A name for the grouping column, e.g. "year". Only used
when also specifying -g.

--filenames Use the filename of each input file as its grouping
value. When specified, -g will be ignored.

Also see: Arguments common to all utilities.

5.7.2 Examples

Contrived example: joining a set of homogoenous files for different years:

$ csvstack -g 2009,2010 examples/realdata/FY09_EDU_Recipients_by_State.csv examples/realdata/Datagov_FY10_EDU_recp_by_State.csv

5.8 csvpys

5.8.1 Description

Run arbitrary python expression on each CSV row to compute value of a new column. It is possible to compute many
new columns at once using -s option multiple times:

usage: csvpys [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-v] [-l]
[--zero] [-n] [-s NEW_COLUMN PY_SCRIPT]
[FILE]

Python scripting in CSV files. Run arbitrary python expression on each CSV row
to compute value of a new column.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

5.7. csvstack 21

csvkit Documentation, Release 0.5.0 (beta)

input on STDIN.

optional arguments:

-n, --names Display column names and indices from the input CSV
and exit.

-s NEW_COLUMN PY_SCRIPT, --script NEW_COLUMN PY_SCRIPT
New column name and a python script.". Inside script
use c[0] or ch[’header’] locals.

Also see: Arguments common to all utilities.

5.8.2 Scripting language

There is no custom scripting language. Just use plain python expressions. Internally expressions are evaluated using
python standard eval() function (they are also precompiled for efficiency). Python expression can use following
locals and globals:

• Locals references two variables representing current row:

– c - list of column values indexed with column id (default: 1-based indexing, with --zero enabled
indexing is 0-based),

– ch - dict with values accessible via columns name.

• Globals are supplied with following modules:

– re and Rex (rex is regular expressions for humans, specially written by experiences using csvkit script-
ing),

– math,

– random,

– collections.

Note: Remember that both c and ch variables have unicode type. Need to be converted if used in other contexts than
strings.

5.8.3 Examples

For following data:

$ csvcut -c 1,4,5 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvlook
|--------------------+--------------------------------+--|
| State Name | Montgomery GI Bill-Active Duty | Montgomery GI Bill- Selective Reserve |
|--------------------+--------------------------------+--|
ALABAMA	6,718	1,728
ALASKA	776	154
ARIZONA	26,822	2,005
ARKANSAS	2,061	988
CALIFORNIA	34,942	2,987
COLORADO	10,389	914
CONNECTICUT	1,771	490

...

22 Chapter 5. Usage

https://github.com/cypreess/python-rex

csvkit Documentation, Release 0.5.0 (beta)

WYOMING	686	212
PUERTO RICO	822	1,107
--------------------+--------------------------------+--		

Let’s sum values for both Montgomery GI Bill:

$ csvcut -c 1,4,5 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvpys -s TOTAL "int(c[2].replace(’,’, ’’) if c[2] != ’’ else 0) + int(c[3].replace(’,’, ’’) if c[3] != ’’ else 0)" | csvlook
|--------------------+--------------------------------+---------------------------------------+--------|
| State Name | Montgomery GI Bill-Active Duty | Montgomery GI Bill- Selective Reserve | TOTAL |
|--------------------+--------------------------------+---------------------------------------+--------|
ALABAMA	6,718	1,728	8446
ALASKA	776	154	930
ARIZONA	26,822	2,005	28827
ARKANSAS	2,061	988	3049
CALIFORNIA	34,942	2,987	37929
COLORADO	10,389	914	11303
CONNECTICUT	1,771	490	2261

...

WYOMING	686	212	898
PUERTO RICO	822	1,107	1929
			0
--------------------+--------------------------------+---------------------------------------+--------			

Note: Expression int(c[2].replace(’,’, ”) if c[2] != ” else 0) converts a string e.g.
"4,156" or empty string to a proper int value (4156), by removing semicolon and casting to int or returning 0
on empty string.

The same using column names:

$ csvcut -c 1,4,5 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvpys -s TOTAL "int(ch[’Montgomery GI Bill-Active Duty’].replace(’,’, ’’) if ch[’Montgomery GI Bill-Active Duty’] != ’’ else 0) + int(ch[’Montgomery GI Bill- Selective Reserve’].replace(’,’, ’’) if ch[’Montgomery GI Bill- Selective Reserve’] != ’’ else 0)" | csvlook

Other example, let’s play with data:

$ csvcut -c 1,8 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvlook
|--------------------+--|
| State Name | Post-Vietnam Era Veteran’s Educational Assistance Program |
|--------------------+--|
ALABAMA	8
ALASKA	2
ARIZONA	11
ARKANSAS	3
CALIFORNIA	48
COLORADO	10
CONNECTICUT	4

... ...

WYOMING	1
PUERTO RICO	3
--------------------+--	

The task is to classify as True all states that have a value greater or equal than 10 in second column:

5.8. csvpys 23

csvkit Documentation, Release 0.5.0 (beta)

$ csvcut -c 1,8 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvpys -s Classify "bool(int(c[2])>=10) if c[2] != ’’ else ’’" | csvlook
|--------------------+---+-----------|
| State Name | Post-Vietnam Era Veteran’s Educational Assistance Program | Classify |
|--------------------+---+-----------|
ALABAMA	8	False
ALASKA	2	False
ARIZONA	11	True
ARKANSAS	3	False
CALIFORNIA	48	True
COLORADO	10	True
CONNECTICUT	4	False

...

WYOMING	1	False
PUERTO RICO	3	False
--------------------+---+-----------		

Note: If statement is only needed because we need to deal with last line which has empty string ”.

OK, within the last example we will calculate number of A’s in state names:

$ csvcut -c 1 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvpys -s "A letter count" "collections.Counter(c[1])[’A’]" | csvlook
|--------------------+-----------------|
| State Name | A letter count |
|--------------------+-----------------|
ALABAMA	4
ALASKA	3
ARIZONA	2
ARKANSAS	3
CALIFORNIA	2
COLORADO	1
CONNECTICUT	0

... ...

WYOMING	0
PUERTO RICO	0
	0
--------------------+-----------------	

Regular expressions can also be very useful in scripting. You can use very simple module named Rex, because standard
python re implementation is not very continence to use in online expressions. For more information on Rex please
refer to documentation.

Let’s use already nice regular expressions support of csvkit, and grep columns to leave only states with started with
“NEW”:

$ csvcut -c 1-3 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvgrep -c 1 -r "^NEW" | csvlook
|----------------+------------------+-------|
| State Name | State Abbreviate | Code |
|----------------+------------------+-------|
NEW HAMPSHIRE	NH	33
NEW JERSEY	NJ	34
NEW MEXICO	NM	35
NEW YORK	NY	36

24 Chapter 5. Usage

https://github.com/cypreess/python-rex
https://github.com/cypreess/python-rex

csvkit Documentation, Release 0.5.0 (beta)

|----------------+------------------+-------|

Let’s say we would like to extract the second part of the state name and concatenate it with the state abbreviate (e.g.
for NEW YORK => YORK (NY)). Of course it could be done in plenty of ways, but we would like to use regular
expressions for that:

$ csvcut -c 1-3 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvgrep -c 1 -r "^NEW" | csvpys -s "New name" "(c[1] == rex(’/^new (.*)$/i’))[1] + ’ (’ + c[2] + ’)’" | csvlook
|----------------+------------------+------+-----------------|
| State Name | State Abbreviate | Code | New name |
|----------------+------------------+------+-----------------|
NEW HAMPSHIRE	NH	33	HAMPSHIRE (NH)
NEW JERSEY	NJ	34	JERSEY (NJ)
NEW MEXICO	NM	35	MEXICO (NM)
NEW YORK	NY	36	YORK (NY)
----------------+------------------+------+-----------------			

Yes, it’s that simple and powerful!

5.9 csvgroup

5.9.1 Description

Perform a SQL-like group by operation on a CSV file on a specified column or columns. Operation results in printing
columns that were aggregation key (it will be distinct in every row) and appending all columns from aggregation
functions values:

usage: csvgroup [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-v] [-l]
[--zero] [-c COLUMNS] [-a FUNCTION COLUMNS] [-n]
[FILE]

Execute a SQL-like group by on specified column or columns

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-c COLUMNS, --columns COLUMNS

The column name(s) on which to group by. Should be
either one name (or index) or a comma-separated list.
May also be left unspecified, in which case none
columns will be used

-a FUNCTION COLUMNS, --aggregation FUNCTION COLUMNS
Aggregate column values using max function

-n, --names Display column names and indices from the input CSV
and exit.

Also see: Arguments common to all utilities.

5.9.2 Aggregation functions

• max

• min

5.9. csvgroup 25

csvkit Documentation, Release 0.5.0 (beta)

• sum

• count - count every row

• countA - count non zero rows

• common - returns most common value (handy with text fields aggregation)

5.9.3 Examples

Having a data:

$ csvlook examples/test_group.csv
|-----+----+----+----+----+-----|
| h1 | h2 | h3 | h4 | h5 | h6 |
|-----+----+----+----+----+-----|
a	a	b	1	2	3
c	b	b	0	0	0
d	b	b	6	7	1
b	a	b	3	2	1
-----+----+----+----+----+-----					

Warning: Before grouping by any number of columns (see -c option) you should always sort data using the
same columns identifiers (e.g. use csvsort -c 1,2,3 | csvgroup -c 1,2,3). csvgroup pre assumes
that data are already sorted using aggregation key. This is very similar to Linux sort and uniq idiom.
Sorting is however not necessary for grouping without specifying -c parameter (without aggregation key).

Lets aggregate by column h2 using min, max and count of columns h4, h5, h6:

$ csvsort -c h2 examples/test_group.csv | csvgroup -c h2 -a min h4 -a max h5 -a count h6 | csvlook
|-----+---------+---------+------------|
| h2 | min(h4) | max(h5) | count(h6) |
|-----+---------+---------+------------|
| a | 1 | 2 | 2 |
| b | 0 | 7 | 2 |
|-----+---------+---------+------------|

We can also define many columns for one aggregate:

$ csvsort -c h2 examples/test_group.csv | csvgroup -c h2 -a max 4-6 | csvlook
|-----+---------+---------+----------|
| h2 | max(h4) | max(h5) | max(h6) |
|-----+---------+---------+----------|
| a | 3 | 2 | 3 |
| b | 6 | 7 | 1 |
|-----+---------+---------+----------|

Aggregating by two columns:

$ csvsort -c h2,h3 examples/test_group.csv | csvgroup -c h2,h3 -a max 4-6 | csvlook
|-----+----+---------+---------+----------|
| h2 | h3 | max(h4) | max(h5) | max(h6) |
|-----+----+---------+---------+----------|
| a | b | 3 | 2 | 3 |
| b | b | 6 | 7 | 1 |
|-----+----+---------+---------+----------|

And by all rows:

26 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

$ csvgroup -a max 4-6 examples/test_group.csv | csvlook
|----------+---------+----------|
| max(h4) | max(h5) | max(h6) |
|----------+---------+----------|
| 6 | 7 | 3 |
|----------+---------+----------|

Note: Notice that aggregation by all rows does not require any kind of sorting, because every row is treated as unique.

Get most common value of every column:

$ csvgroup -a common 1-6 examples/test_group.csv | csvlook
|-----+----+----+----+----+-----|
| h1 | h2 | h3 | h4 | h5 | h6 |
|-----+----+----+----+----+-----|
| a | a | b | 1 | 2 | 1 |
|-----+----+----+----+----+-----|

Output (and Analysis)

5.10 csvjson

5.10.1 Description

Converts a CSV file into JSON or GeoJSON (depending on flags):

usage: csvjson [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-v] [-l]
[--zero] [-i INDENT] [-k KEY] [--lat LAT] [--lon LON]
[--crs CRS]
[FILE]

Convert a CSV file into JSON (or GeoJSON).

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-i INDENT, --indent INDENT

Indent the output JSON this many spaces. Disabled by
default.

-k KEY, --key KEY Output JSON as an array of objects keyed by a given
column, KEY, rather than as a list. All values in the
column must be unique. If --lat and --lon are also
specified, this column will be used as GeoJSON Feature
ID.

--lat LAT A column index or name containing a latitude. Output
will be GeoJSON instead of JSON. Only valid if --lon
is also specified.

--lon LON A column index or name containing a longitude. Output
will be GeoJSON instead of JSON. Only valid if --lat
is also specified.

--crs CRS A coordinate reference system string to be included

5.10. csvjson 27

csvkit Documentation, Release 0.5.0 (beta)

with GeoJSON output. Only valid if --lat and --lon are
also specified.

Also see: Arguments common to all utilities.

5.10.2 Examples

Convert veteran’s education dataset to JSON keyed by state abbreviation:

$ csvjson -k "State Abbreviate" -i 4 examples/realdata/FY09_EDU_Recipients_by_State.csv

Results in a JSON document like:

{
[...]
"WA":
{

"": "",
"Code": "53",
"Reserve Educational Assistance Program": "549",
"Dependents’ Educational Assistance": "2,192",
"Montgomery GI Bill-Active Duty": "7,969",
"State Name": "WASHINGTON",
"Montgomery GI Bill- Selective Reserve": "769",
"State Abbreviate": "WA",
"Post-Vietnam Era Veteran’s Educational Assistance Program": "13",
"TOTAL": "11,492"

},
[...]

}

Converting locations of public art into GeoJSON:

$ csvjson --lat latitude --lon longitude --k slug --crs EPSG:4269 -i 4 examples/test_geo.csv

Results in a GeoJSON document like:

{
"type": "FeatureCollection",
"bbox": [

-95.334619,
32.299076986939205,
-95.250699,
32.351434

],
"crs": {

"type": "name",
"properties": {

"name": "EPSG:4269"
}

},
"features": [

{
"geometry": {

"type": "Point",
"coordinates": [

-95.30181,
32.35066

28 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

]
},
"type": "Feature",
"id": "dcl",
"properties": {

"photo_credit": "",
"description": "In addition to being the only coffee shop in downtown Tyler, DCL also features regular exhibitions of work by local artists.",
"artist": "",
"title": "Downtown Coffee Lounge",
"install_date": "",
"address": "200 West Erwin Street",
"last_seen_date": "3/30/12",
"type": "Gallery",
"photo_url": ""

}
},

[...]
]

}

5.11 csvlook

5.11.1 Description

Renders a CSV to the command line in a readable, fixed-width format:

usage: csvlook [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING]
[FILE]

Render a CSV file in the console as a fixed-width table.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit

If a table is too wide to display properly try truncating it using csvcut.

If the table is too long, try filtering it down with grep or piping the output to less.

Also see: Arguments common to all utilities.

5.11.2 Examples

Basic use:

$ csvlook examples/testfixed_converted.csv

This utility is especially useful as a final operation when piping through other utilities:

$ csvcut -c 9,1 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvlook

5.11. csvlook 29

csvkit Documentation, Release 0.5.0 (beta)

5.12 csvpy

5.12.1 Description

Loads a CSV file into a csvkit.CSVKitReader object and then drops into a Python shell so the user can inspect
the data however they see fit:

usage: csvpy [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-v]
FILE

Load a CSV file into a CSVKitReader object and then drops into a Python shell.

positional arguments:
FILE The CSV file to operate on.

optional arguments:
-h, --help show this help message and exit
--dict Use CSVKitDictReader instead of CSVKitReader.

This utility will automatically use the IPython shell if it is installed, otherwise it will use the running Python shell.

Note: Due to platform limitations, csvpy does not accept file input on STDIN.

Also see: Arguments common to all utilities.

5.12.2 Examples

Basic use:

$ csvpy examples/dummy.csv
Welcome! "examples/dummy.csv" has been loaded in a CSVKitReader object named "reader".
>>> reader.next()
[u’a’, u’b’, u’c’]

As a dictionary:

$ csvpy --dict examples/dummy.csv -v
Welcome! "examples/dummy.csv" has been loaded in a CSVKitDictReader object named "reader".
>>> reader.next()
{u’a’: u’1’, u’c’: u’3’, u’b’: u’2’}

5.13 csvsql

5.13.1 Description

Generate SQL statements for a CSV file or execute those statements directly on a database. In the latter case supports
both creating tables and inserting data:

usage: csvsql [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p ESCAPECHAR] [-z MAXFIELDSIZE] [-e ENCODING] [-v]
[-y SNIFFLIMIT]
[-i {access,sybase,sqlite,informix,firebird,mysql,oracle,maxdb,postgresql,mssql}]

30 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

[--db CONNECTION_STRING] [--insert]
[FILE]

Generate SQL statements for a CSV file or create execute those statements
directly on a database.

Generate a SQL CREATE TABLE statement for a CSV file.

positional arguments:
FILE The CSV file(s) to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-y SNIFFLIMIT, --snifflimit SNIFFLIMIT

Limit CSV dialect sniffing to the specified number of
bytes.

-i {access,sybase,sqlite,informix,firebird,mysql,oracle,maxdb,postgresql,mssql}, --dialect {access,sybase,sqlite,informix,firebird,mysql,oracle,maxdb,postgresql,mssql}
Dialect of SQL to generate. Only valid when --db is
not specified.

--db CONNECTION_STRING
If present, a sqlalchemy connection string to use to
directly execute generated SQL on a database.

--insert In addition to creating the table, also insert the
data into the table. Only valid when --db is
specified.

--table TABLE_NAME Specify a name for the table to be created. If
omitted, the filename (minus extension) will be used.

--no-constraints Generate a schema without length limits or null
checks. Useful when sampling big tables.

--no-create Skip creating a table. Only valid when --insert is
specified.

--blanks Do not coerce empty strings to NULL values.

Also see: Arguments common to all utilities.

For information on connection strings and supported dialects refer to the SQLAlchemy documentation.

5.13.2 Examples

Generate a statement in the PostgreSQL dialect:

$ csvsql -i postgresql examples/realdata/FY09_EDU_Recipients_by_State.csv

Create a table and import data from the CSV directly into Postgres:

$ createdb test
$ csvsql --db postgresql:///test --table fy09 --insert examples/realdata/FY09_EDU_Recipients_by_State.csv

For large tables it may not be practical to process the entire table. One solution to this is to analyze a sample of the
table. In this case it can be useful to turn off length limits and null checks with the no-constraints option:

$ head -n 20 examples/realdata/FY09_EDU_Recipients_by_State.csv | csvsql --no-constraints --table fy09

Create tables for an entire folder of CSVs and import data from those files directly into Postgres:

$ createdb test
$ csvsql --db postgresql:///test --insert examples/*.csv

5.13. csvsql 31

http://www.sqlalchemy.org/docs/dialects/

csvkit Documentation, Release 0.5.0 (beta)

5.14 csvstat

5.14.1 Description

Prints descriptive statistics for all columns in a CSV file. Will intelligently determine the type of each column and
then print analysis relevant to that type (ranges for dates, mean and median for integers, etc.):

usage: csvstat [-h] [-d DELIMITER] [-t] [-q QUOTECHAR] [-u {0,1,2,3}] [-b]
[-p‘ ESCAPECHAR] [-e ENCODING]
[FILE]

Print descriptive statistics for all columns in a CSV file.

positional arguments:
FILE The CSV file to operate on. If omitted, will accept

input on STDIN.

optional arguments:
-h, --help show this help message and exit
-y SNIFFLIMIT, --snifflimit SNIFFLIMIT

Limit CSV dialect sniffing to the specified number of
bytes.

-c COLUMNS, --columns COLUMNS
A comma separated list of column indices or names to
be examined. Defaults to all columns.

--max Only output max.
--min Only output min.
--sum Only output sum.
--mean Only output mean.
--median Only output median.
--stdev Only output standard deviation.
--nulls Only output whether column contains nulls.
--unique Only output unique values.
--freq Only output frequent values.
--len Only output max value length.

Also see: Arguments common to all utilities.

5.14.2 Examples

Basic use:

$ csvstat examples/realdata/FY09_EDU_Recipients_by_State.csv

When an statistic name is passed, only that stat will be printed:

$ csvstat --freq examples/realdata/FY09_EDU_Recipients_by_State.csv

1. State Name: None
2. State Abbreviate: None
3. Code: None
4. Montgomery GI Bill-Active Duty: 3548.0
5. Montgomery GI Bill- Selective Reserve: 1019.0
6. Dependents’ Educational Assistance: 1261.0
7. Reserve Educational Assistance Program: 715.0
8. Post-Vietnam Era Veteran’s Educational Assistance Program: 6.0

32 Chapter 5. Usage

csvkit Documentation, Release 0.5.0 (beta)

9. TOTAL: 6520.0
10. _unnamed: None

If a single stat and a single column are requested, only a value will be returned:

$ csvstat -c 4 --freq examples/realdata/FY09_EDU_Recipients_by_State.csv

3548.0

Appendices

5.15 Arguments common to all utilities

5.15.1 Description

All utilities which accept CSV as input share a set of common command-line arguments:

-d DELIMITER, --delimiter DELIMITER
Delimiting character of the input CSV file.

-t, --tabs Specifies that the input CSV file is delimited with
tabs. Overrides "-d".

-q QUOTECHAR, --quotechar QUOTECHAR
Character used to quote strings in the input CSV file.

-u {0,1,2,3}, --quoting {0,1,2,3}
Quoting style used in the input CSV file. 0 = Quote
Minimal, 1 = Quote All, 2 = Quote Non-numeric, 3 =
Quote None.

-b, --doublequote Whether or not double quotes are doubled in the input
CSV file.

-p‘ ESCAPECHAR, --escapechar ESCAPECHAR
Character used to escape the delimiter if quoting is
set to "Quote None" and the quotechar if doublequote
is not specified.

-z MAXFIELDSIZE, --maxfieldsize MAXFIELDSIZE
Maximum length of a single field in the input CSV
file.

-e ENCODING, --encoding ENCODING
-v, --verbose Print detailed tracebacks when errors occur.

Specify the encoding the input file.
-l, --linenumbers Insert a column of line numbers at the front of the

output. Useful when piping to grep or as a simple
primary key.

These arguments may be used to override csvkit’s default “smart” parsing of CSV files. This is frequently necessary
if the input file uses a particularly unusual style of quoting or is an encoding that is not compatible with utf-8.

Note that the output of csvkit’s utilities is always formatted with “default” formatting options. This means that when
executing multiple csvkit commands (either with a pipe or via intermediary files) it is only ever necessary to specify
formatting arguments the first time. (And doing so for subsequent commands will likely cause them to fail.)

5.15.2 Examples

Convert the 2000 census geo headers file from fixed-width to CSV and from latin-1 encoding to utf8:

5.15. Arguments common to all utilities 33

csvkit Documentation, Release 0.5.0 (beta)

$ in2csv -e iso-8859-1 -f fixed -s examples/realdata/census_2000/census2000_geo_schema.csv examples/realdata/census_2000/usgeo_excerpt.upl > usgeo.csv

Add line numbers to a file, making no other changes:

$ csvcut -l examples/realdata/FY09_EDU_Recipients_by_State.csv

34 Chapter 5. Usage

CHAPTER

SIX

DEVELOPMENT

csvkit is designed to augment or supercede much of Python’s csv module. Important parts of the API are documented
here:

6.1 csvkit

This module contains csvkit’s superpowered reader and writer. The most improvement over the standard library
versions is that these versions are completely unicode aware and can support any encoding by simply passing in the
its name at the time they are created.

We recommend you use these as a replacement for csv.reader() and csv.writer().

class csvkit.CSVKitReader(f, encoding=’utf-8’, maxfieldsize=None, **kwargs)
A unicode-aware CSV reader. Currently adds nothing to csvkit.unicsv.UnicodeCSVReader, but
might someday.

line_num

next()

class csvkit.CSVKitWriter(f, encoding=’utf-8’, line_numbers=False, **kwargs)
A unicode-aware CSV writer with some additional features.

writerow(row)

writerows(rows)

class csvkit.CSVKitDictReader(f, fieldnames=None, restkey=None, restval=None, *args, **kwargs)
A unicode-aware CSV DictReader. Currently adds nothing to csvkit.unicsv.UnicodeCSVWriter, but
might someday.

fieldnames

next()

class csvkit.CSVKitDictWriter(f, encoding=’utf-8’, line_numbers=False, **kwargs)
A unicode-aware CSV DictWriter with some additional features.

writerow(row)

writerows(rows)

writeheader()

35

http://docs.python.org/2.7/library/csv.html#csv
http://docs.python.org/2.7/library/csv.html#csv.reader
http://docs.python.org/2.7/library/csv.html#csv.writer

csvkit Documentation, Release 0.5.0 (beta)

6.2 csvkit.unicsv

This module contains unicode aware replacements for csv.reader() and csv.writer(). The implementations
are largely copied from examples in the csv module documentation.

class csvkit.unicsv.UTF8Recoder(f, encoding)
Iterator that reads an encoded stream and reencodes the input to UTF-8.

next()

class csvkit.unicsv.UnicodeCSVReader(f, encoding=’utf-8’, maxfieldsize=None, **kwargs)
A CSV reader which will read rows from a file in a given encoding.

next()

line_num

class csvkit.unicsv.UnicodeCSVWriter(f, encoding=’utf-8’, **kwargs)
A CSV writer which will write rows to a file in the specified encoding.

NB: Optimized so that eight-bit encodings skip re-encoding. See: https://github.com/onyxfish/csvkit/issues/175

writerow(row)

writerows(rows)

class csvkit.unicsv.UnicodeCSVDictReader(f, fieldnames=None, restkey=None, restval=None,
*args, **kwargs)

Defer almost all implementation to csv.DictReader, but wraps our unicode reader instead of
csv.reader().

fieldnames

next()

class csvkit.unicsv.UnicodeCSVDictWriter(f, fieldnames, writeheader=False, restval=’‘, ex-
trasaction=’raise’, *args, **kwds)

Defer almost all implementation to csv.DictWriter, but wraps our unicode writer instead of
csv.writer().

writeheader()

writerow(rowdict)

writerows(rowdicts)

6.3 csvkit.sniffer

csvkit.sniffer.sniff_dialect(sample)
A functional version of csv.Sniffer().sniff, that extends the list of possible delimiters to include some
seen in the wild.

36 Chapter 6. Development

http://docs.python.org/2.7/library/csv.html#csv.reader
http://docs.python.org/2.7/library/csv.html#csv.writer
http://docs.python.org/library/csv.html#examples
https://github.com/onyxfish/csvkit/issues/175
http://docs.python.org/2.7/library/csv.html#csv.DictReader
http://docs.python.org/2.7/library/csv.html#csv.reader
http://docs.python.org/2.7/library/csv.html#csv.DictWriter
http://docs.python.org/2.7/library/csv.html#csv.writer

CHAPTER

SEVEN

CONTRIBUTING

Want to hack on csvkit? Here’s how:

7.1 Contributing to csvkit

7.1.1 Welcome!

Thanks for your interest in contributing to csvkit. There is work be done by developers of all skill levels.

7.1.2 Process for contributing code

Contributors should use the following roadmap to guide them through the process of submitting a contribution:

1. Fork the project on Github.

2. Check out the issue tracker and find a task that needs to be done and is of a scope you can realistically expect to
complete in a few days. Don’t worry about the priority of the issues at first, but try to choose something you’ll
enjoy. You’re much more likely to finish something to the point it can be merged if it’s something you really
enjoy hacking on.

3. Comment on the ticket letting everyone know you’re going to be hacking on it so that nobody duplicates your
effort. It’s also good practice to provide some general idea of how you plan on resolving the issue so that other
developers can make suggestions.

4. Write tests for the feature you’re building. Follow the format of the existing tests in the test directory to see how
this works. You can run all the tests with the command nosetests. The one exception to testing is command-
line scripts. These don’t need unit test, though all reusable components should be factored into library modules.

5. Write the code. Try to stay consistent with the style and organization of the existing codebase. A good patch
won’t be refused for stylistic reasons, but large parts of it may be rewritten and nobody wants that.

6. As your coding, periodically merge in work from the master branch and verify you haven’t broken anything by
running the test suite.

7. Write documentation for user-facing features (and library features once the API has stabilized).

8. Once it works, is tested, and has documentation, submit a pull request on Github.

9. Wait for it to either be merged or to recieve a comment about what needs to be fixed.

10. Rejoice.

37

https://github.com/onyxfish/csvkit
https://github.com/onyxfish/csvkit/issues

csvkit Documentation, Release 0.5.0 (beta)

7.1.3 Legalese

To the extent that they care, contributors should keep the following legal mumbo-jumbo in mind:

The source of csvkit and therefore of any contributions are licensed under the permissive MIT license. By submitting
a patch or pull request you are agreeing to release your code under this license. You will be acknowledged in the
AUTHORS file. As the owner of your specific contributions you retain the right to privately relicense your specific
code contributions (and no others), however, the released version of the code can never be retracted or relicensed.

38 Chapter 7. Contributing

http://www.opensource.org/licenses/mit-license.php

CHAPTER

EIGHT

AUTHORS

The following individuals have contributed code to csvkit:

• Christopher Groskopf

• Joe Germuska

• Aaron Bycoffe

• Travis Mehlinger

• Alejandro Companioni

• Benjamin Wilson

• Bryan Silverthorn

• Evan Wheeler

• Matt Bone

• Ryan Pitts

• Hari Dara

• Jeff Larson

• Jim Thaxton

• Miguel Gonzalez

• Anton Ian Sipos

• Gregory Temchenko

• Kevin Schaul

• Marc Abramowitz

• Noah Hoffman

• Jan Schulz

• Derek Wilson

• Chris Rosenthal

• Davide Setti

• Gabi Davar

• Sriram Karra

• James McKinney

39

csvkit Documentation, Release 0.5.0 (beta)

• Krzysztof Dorosz

40 Chapter 8. Authors

CHAPTER

NINE

LICENSE

The MIT License

Copyright (c) 2013 Christopher Groskopf and contributers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

41

csvkit Documentation, Release 0.5.0 (beta)

42 Chapter 9. License

CHAPTER

TEN

CHANGELOG

10.1 0.5.1

• Added Chris Rosenthal to AUTHORS.

• Fixed multi-file input to csvsql. (#193)

• Added csvpys command (python scripting). (#214, #215)

• Added csvgroup command (equivalent to sql group by). (#215)

• Added Krzysztof Dorosz to AUTHORS.

10.2 0.5.0

• Implement geojson support in csvjson. (#159)

• Optimize writing of eight bit codecs. (#175)

• Created csvpy. (#44)

• Support –not-columns for excluding columns. (#137)

• Add Jan Schulz to AUTHORS file.

• Add Windows scripts. (#111, #176)

• csvjoin, csvsql and csvstack will no longer hold open all files. (#178)

• Added Noah Hoffman to AUTHORS.

• Make csvlook output compatible with emacs table markup. (#174)

10.3 0.4.4

• Add Derek Wilson to AUTHORS.

• Add Kevin Schaul to AUTHORS.

• Add DBF support to in2csv. (#11, #160)

• Support –zero option for zero-based column indexing. (#144)

• Support mixing nulls and blanks in string columns.

43

csvkit Documentation, Release 0.5.0 (beta)

• Add –blanks option to csvsql. (#149)

• Add multi-file (glob) support to csvsql. (#146)

• Add Gregory Temchenko to AUTHORS.

• Add –no-create option to csvsql. (#148)

• Add Anton Ian Sipos to AUTHORS.

• Fix broken pipe errors. (#150)

10.4 0.4.3

• Begin CHANGELOG (a bit late, I’ll admit).

44 Chapter 10. Changelog

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

45

csvkit Documentation, Release 0.5.0 (beta)

46 Chapter 11. Indices and tables

PYTHON MODULE INDEX

c
csvkit, ??
csvkit.sniffer, ??
csvkit.unicsv, ??

47

